

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiments

Non-Standard Interactions

Large Extra Dimensions

LBL Steril

CPT Violation

BSM with ν

Summary

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Brookhaven Forum 2021 (BF2021), Nov 3-5, 2021, virtual

Mary Bishai

Brookhaven

November 4, 2021

Outline

Prospects for Beyond the \(\nu \text{Standard}\) Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

Non-Standard Interactions

Large Extra Dimensions

LBL Sterilo Searches

CPT Violation

BSM with $u_{
m a}$ Appearance

1 Long-Baseline ν Experiments

2 Non-Standard Interactions

3 Large Extra Dimensions

4 LBL Sterile Searches

5 CPT Violation

6 BSM with ν_{τ} Appearance

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Non-Standard

Large Extra

LBL Sterile

CPT Violation

BSM with ν

Summar

Introduction to Long Baseline Neutrino Experiments

BSM and Neutrino Oscillations

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline u Experiments

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

BSM with $u_{ au}$ Appearance

ummar

Due to the very small masses and large mixing of neutrinos, their oscillations over a long distance act as an exquisitely precise interferometer with high sensitivity to very small perturbations caused by new physics phenomena, for e.g.:

- Non-standard interactions in matter that manifest in long-baseline oscillations as deviations from the three-flavor mixing model
- Sterile neutrino states that mix with the three known active neutrino states
- New long-distance potentials arising from discrete symmetries that manifest as small perturbations on neutrino and antineutrino oscillations over a long baseline
- Large compactified extra dimensions from String Theory models that manifest through mixing between the Kaluza-Klein states and the three active neutrino states
- Non-unitarity of the 3-flavor mixing matrix due to BSM of unknown origin

Sources of Neutrinos

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline u Experiments

Non-Standard Interactions

Large Extr Dimension

LBL Steri Searches

CPT Violation

BSM with $u_{m{ au}}$

Sources of Neutrinos

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Long-Baseline ν Experiments

Oscillations of $\nu_{\mu} \rightarrow \nu_{\rm e}$ at different baselines

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Long-Baseline *ν* Experiments

$$P(\nu_{\mu} \rightarrow \nu_{e})$$
 maxima: $E_{\nu}^{n}(\text{GeV}) \sim \text{Baseline(km)}/(515 \times (2n-1))$ for $\Delta m_{31}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}$

Oscillations of $u_{\mu} \rightarrow u_{\rm e}$ at different baselines

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Long-Baseline ν Experiments

 $P(\nu_{\mu} \to \nu_{e})$ maxima: $E_{\nu}^{n}(\text{GeV}) \sim \text{Baseline(km)}/(515 \times (2n-1))$ for

 $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

Oscillations of $u_{\mu} \rightarrow u_{\rm e}$ at different baselines

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Long-Baseline ν Experiments

 $P(\nu_{\mu} \to \nu_{e})$ maxima: $E_{\nu}^{n}(\text{GeV}) \sim \text{Baseline(km)}/(515 \times (2n-1))$ for

 $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

Atmospheric Neutrino Oscillations

Prospects for Beyond the \(\nu \)Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiments

Non-Standard Interactions

Large Extr

LBL Steri Searches

CPT Violation

BSM with u. Appearance

Summa

Neutrinos from High Power Proton Sources

Prospects for Beyond the \(\nu \text{Standard}\) Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiments

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with ν .

Neutrinos from High Power Proton Sources

Prospects for Beyond the \$\nu \text{Standard}\$
Model Physics in Long Baseline Neutrino Experiments

Mary Bish

Long-Baseline ν Experiments

Non-Standard Interactions

Large Extra Dimensions

LBL Steril

CPT Violation

BSM with u_{γ}

Accelerator Neutrino Beam Spectra/Fluxes

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline u Experiments

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with $u_{oldsymbol{ au}}$ Appearance

Summar

Broad-band beams: MINOS/MINOS+:

To get below 1 GeV from an π DIF accelerator source, go off-axis to a high energy proton beam - the JPARC beam for T2K (295 km baseline). This produces a narrow-band beam:

Neutrino CC Event Rates - Various Experiments

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

 $\begin{array}{c} {\sf Long\text{-}Baseline} \\ \boldsymbol{\nu} \ {\sf Experiments} \end{array}$

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

BSM with $u_{oldsymbol{ au}}$ Appearance

Summai

From arXiv:1307.7335, for 50 kton.years* of exposure:								
Super Beams								
Experiment	Baseline	$ u_{\mu} ightarrow u_{\mu}$	$\nu_{\mu} ightarrow u_{ au}$	$ u_{\mu} ightarrow u_{ ext{e}}$				
T2K	295km (off-axis)							
30 GeV, 750 kW								
9×10^{20} POT/year		900	< 1	40 - 70				
MINOS LE	735km							
120 GeV, 700 kW								
6×10^{20} POT/year		11,000	115	230-340				
NO uA	810km (off-axis)							
120 GeV, 700 kW								
6 × 10 ²⁰ POT/year		1500	10	120 - 200				
LBNE (LBNF) LE	1,300km							
80 GeV, 1.1MW								
1.5×10^{21} POT/year		4300	160	350 - 600				
LBNE (LBNF) ME	1,300km							
120 GeV, 1.2MW								
1.1×10^{21} POT/year		12,000	690	290 - 430				
u Factory at Fermilab								
Experiment	Baseline	$ u_{\mu} ightarrow u_{\mu}$	$\nu_{\mu} ightarrow u_{ au}$	$ u_{ m e} ightarrow u_{\mu}$				
NuMAX I	1,300km							
3 GeV, 1MW								
$0.94 \times 10^{20} \ \mu/\text{year}$		340	30	70 - 120				
(no μ cooling)								
NuMAX II	1,300km							
3 GeV, 3MW								
$5.6 \times 10^{20} \ \mu/\text{year}$		2000	300	420 - 700				

^{*} Facility duty factor taken into consideration

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Non-Standard

Large Extr

LBL Sterile

CPT Violation

BSM with ν

ummar

Probing new physics beyond 3-flavor oscillations: Non Standard Interactions

Prospects for Beyond the \(\nu\)Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baselin u Experimen

Non-Standard Interactions

Large Extr

LBL Steril

CPT Violation

BSM with $oldsymbol{
u}_{c}$

Summar

In the Standard Model,

· With new physics, we could have

$$\begin{split} H &= \textit{U}\left(\begin{array}{c} \Delta \textit{m}_{21}^{2}/2\textit{E} \\ \Delta \textit{m}_{31}^{2}/2\textit{E} \end{array}\right) \textit{U}^{\dagger} + \tilde{\textit{V}}_{\mathrm{MSW}} \\ \tilde{\textit{V}}_{\mathrm{MSW}} &= \sqrt{2}\textit{G}_{\textit{F}}\textit{N}_{e} \left(\begin{array}{ccc} 1 + \epsilon_{ee}^{m} & \epsilon_{e\mu}^{m} & \epsilon_{e\tau}^{m} \\ \epsilon_{e\mu}^{m*} & \epsilon_{\mu\mu}^{m} & \epsilon_{\mu\tau}^{m} \\ \epsilon_{e\tau}^{m*} & \epsilon_{\mu\tau}^{m*} & \epsilon_{\tau\tau}^{m} \end{array}\right) \end{split}$$

NSI impact on Atmospheric Long Baseline

Prospects for Beyond the \(\nu\)Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bish

Long-Baselin u Experimen

Non-Standard Interactions

Large Extra Dimension

LBL Steri Searches

CPT Violatio

Appearance

Summa

NSI limits from Current Experiments

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bish

Long-Baselin

ν Experimen

Non-Standard Interactions

Large Extra Dimensions

LBL Steri Searches

CPT Violation

BSM with u Appearance

CP Asymmetry vs $\mathsf{E}_{ u}$ and δ_{cp}

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bish

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

-150

Summary

Summary

Asymmetries caused by CPV and matter are a complex phenomena

1

-0.8

E , Ge∜0

CP Asymmetry vs $\mathsf{E}_{ u}$ and δ_{cp}

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Non-Standard Interactions

-150

Asymmetries caused by CPV and matter are a complex phenomena

1

-0.8

E , Ge∜0

Extricating NSI from 3-flavor Oscillations

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Non-Standard Interactions

NSI could also impact interpretation of observed CP asymmetries in long-baseline:

(M. Masud, A. Chatterjee, P. Mehta arXiv:1510.08261)

Extricating NSI from 3-flavor Oscillations

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bish

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

BSM with $u_{ au}$ Appearance

Summar

Study NSI sensitivity with GLoBeS using $\nu_{\mu} \to \nu_{\mu, \rm e}$ and 3 sample LBNF-like beam tunes : LE, ME and HE*.

NSI parameters used: $|\epsilon_{\rm e\mu}|=0.04, \ |\epsilon_{\rm e\tau}|=0.04, \ \epsilon_{\rm ee}=0.4, \ \phi_{\rm e\mu=0, \ \phi_{\rm e\tau}}$

NSI effects in $\nu_{\mu} \rightarrow \nu_{\rm e}$ are larger at higher energy

* 2 NuMI horns, 230kA, 6.6m apart and horns were not moved for higher energy beam tunes (non-optimal beams). Decay pipe was assumed to be 250m.

M. Masud, M. Bishai and P. Mehta. Sci. Rep. 9 (2019) no.1, 352

Extricating NSI from 3-flavor Oscillations

Prospects for Beyond the \$\nu \text{Standard}\$
Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline
ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril

CPT Violation

Appearance

Summar

Can achieve 3σ separation for > 80% of true $\delta_{\rm cp}$

No beam optimization attempted yet!

M. Masud, M. Bishai and P. Mehta. Sci. Rep. 9 (2019) no.1, 352

Future NSI Constraints from LBL: DUNE

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline u Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with $u_{ au}$ Appearance

Summar

P. Abi et. al. Eur. Phys. J. C (81) (2021):

In LBL expts DUNE (default) has the best sensitivity to NSI and T2HKK (with 2nd detector in Korea) has best sensitivity to CP phase in the presence of NSI. For comparison between DUNE, T2HK, T2HKK - check out JHEP 1701:071 (2017)

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Large Extra Dimensions

Search for Large Extra Dimensions with MINOS/MINOS+

Large Extra Dimensions (LED) and u_{μ} Disappearance

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bishai

Long-Baseline

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

BSM with $u_{ au}$ Appearance

Summai

In some models of LED, sterile neutrinos arise as Kaluza-Klein states in an extra dimension compactified on a circle with radius R. Using the MINOS detector energy resolution the impact on the $P(\nu_{\mu} \rightarrow \nu_{\mu})$ oscillation probability for a given R and m_0 the mass of the lightest neutrino state:

Results from MINOS/MINOS+ search for LED

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bishai

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

BSM with $u_{oldsymbol{ au}}$ Appearance

Summar

Wide-band beams, long baselines, high efficiency/purity ν_μ selection and combination of CC and NC channels start to constrain LED models.

Phys.Rev. D94 (2016) no.11, 111101

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

Non-Standard

Large Extra

LBL Sterile

CPT Violation

BSM with ν

ummar

Probing new physics beyond 3-flavor oscillations: Sterile neutrinos

Impact of Sterile Neutrinos on Long-Baseline u Oscillations

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with ν_{τ}

A. Sousa, U. Cinncinati

Impact of Sterile Neutrinos on Long-Baseline u Oscillations

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with ν_{τ} Appearance

A. Sousa, U. Cinncinati

Impact of Sterile Neutrinos on Long-Baseline u Oscillations

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline
ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

CPT Violation

BSM with u_1 Appearance

A. Sousa, U. Cinncinati

Sensitivities to 3+1 from SBL/LBL Appearance and Disappearance

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiment

Non-Standar Interactions

Large Ext

LBL Sterile Searches

CPT Violation

BSM with $oldsymbol{
u}_{\epsilon}$

Summa

MicroBooNE result Oct 27,2021: MiniBooNE is not ν_e appearance

(see B. Fleming's talk)

Sensitivities to 3+1 from SBL/LBL Appearance and Disappearance

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline
ν Experimen

Non-Standard Interactions

Large Extr Dimension

LBL Sterile Searches

CPT Violatio

BSM with $u_{ au}$ Appearance

Summar

DUNE with CP optimized beam only

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

Non-Standard

Large Extra Dimensions

LBL Steril

CPT Violation

Appearance

ummar

Probing new physics beyond 3-flavor oscillations: Lortentz and CPT Violation

Probing CPT Violation u_{μ} Disappareance

Prospects for Beyond the \(\nu\)Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline
ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

Appearance

Summar

■
$$P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \Rightarrow CP$$
 Violation

$$ho$$
 $P(
u_{\mu}
ightarrow
u_{\mu})
eq P(\bar{
u}_{\mu}
ightarrow \bar{
u}_{\mu}) \Rightarrow CPT Violation$

DUNE sensitivity to neutrino-antineutrino parameters difference

$$\begin{split} |\Delta m_{21}^2 - \Delta \overline{m}_{21}^2| &< 4.7 \times 10^{-5} \, \mathrm{eV}^2, \\ |\Delta m_{31}^2 - \Delta \overline{m}_{31}^2| &< 3.7 \times 10^{-4} \, \mathrm{eV}^2, \\ |\sin^2 \theta_{12} - \sin^2 \overline{\theta}_{12}| &< 0.14, \\ |\sin^2 \theta_{13} - \sin^2 \overline{\theta}_{13}| &< 0.03, \\ |\sin^2 \theta_{23} - \sin^2 \overline{\theta}_{23}| &< 0.32. \end{split}$$

parameter	value			
Δm_{21}^2	$7.56 \times 10^{-5} \text{eV}^2$			
Δm_{31}^2	$2.55\times10^{-3} \mathrm{eV^2}$			
$\sin^2 \theta_{12}$	0.321			
$\sin^2 \theta_{23}$	0.43, 0.50, 0.60			
$\sin^2 \theta_{13}$	0.02155			
δ	1.50π			

Combined Limits on Oscillation Parameters with Future LBL Experiments

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline ν Experiment

Non-Standard Interactions

Large Extra Dimensions

LBL Steril Searches

CPT Violation

Appearance

Future LBL expt including upgrades

Experiment	T2HK	T2HKK	ESSnuSB	DUNE
Baseline	295 km	295 km; 1100 km	540 km	$1300~\mathrm{km}$
Fiducial Volume	374 kt	187 kt (@ 295 km)		
		+ 187 kt (@ 1100km)	500 kt	40 kt
Normalisation uncertainty				
ν_e signal (bkg)	3.2% (5%)	3.8% (5%)	3.2% (5%)	2% (5%)
$\bar{\nu}_e$ signal (bkg)	3.9% (5%)	4.1% (5%)	3.9% (5%)	2% (5%)
ν_{μ} signal (bkg)	3.6% (5%)	3.8% (5%)	3.6% (5%)	5% (5%)
$\bar{\nu}_{\mu}$ signal (bkg)	3.6% (5%)	3.8% (5%)	3.6% (5%)	5% (5%)

Can get to % level precision with accelerator based expts with upgrades to push statistical uncertainties to be comparable/less than systematics but difficult to get precision beyond that.

Phys.Rev.D 104 (2021) 5, 055002

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

Non-Standard

Large Extra

LBL Steril

CPT Violatio

CPT Violatio

BSM with $\overline{
u_{ au}}$ Appearance

Summar

Probing new physics beyond 3-flavor oscillations: $\nu_{\mu} \rightarrow \nu_{\tau}$

Prospects for Beyond the

νStandard

Model Physics in Long

Baseline

Neutrino

Experiments

Higher u Energy Beam Tunes with DUNE (M. Bishai

proposal)

NuMI-like reference design could be tuned to higher energy to observe $\nu_{\mu} \rightarrow \nu_{\tau}$ with high statistics.

2015 two horn optimized design $E_p = 66$ GeV:

 $\nu_{\mu} \rightarrow \nu_{\rm e}$ 290 events ν_{μ} rightarrow ν_{τ} 60 events in 40 ktons, 1 year at 1.2 MW

BSM with ν_{τ} Appearance

Prospects for Beyond the

νStandard

Model Physics in Long

Baseline Neutrino

Experiments

Higher u Energy Beam Tunes with DUNE (M. Bishai

proposal)

NuMI-like reference design could be tuned to higher energy to observe $\nu_{\mu} \to \nu_{\tau}$ with high statistics.

LBNF target -2m from horn 1, NuMI focusing 230 kA, horns 17m apart $v_u \rightarrow v_a$ Appearance at 1300 km $v_u \rightarrow v_a$ Appearance at 1300 km

 $u_{\mu}
ightarrow
u_{e}$ 330 events $u_{\mu}
ightarrow
u_{ au}$ 700 events in 40 ktons, 1 year at 1.2 MW

Increase ν_{τ} appearance 10x!!!

Increase high energy $\nu_{\rm e}$ appearance - good for NSI/Sterile searches

Appearance Summary

BSM with ν_{τ}

The Trouble with Taus

Prospects for Beyond the \$\nu \text{Standard}\$
Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline
ν Experimen

Non-Standard Interactions

Large Extra Dimension

LBL Steril

CPT Violation

BSM with $u_{ au}$ Appearance

Summar

Using $\nu_{ au}$ appearance for precision oscillation measurements is difficult. For $\nu_{ au}$ CC interactions where the au decays hadronically there is a lot of smearing:

$u_{ au}$ Appearance Measurements in DUNE

Prospects for Beyond the \(\nu \text{Standard}\) Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

Non-Standard Interactions

Large Extra Dimensions

LBL Sterile Searches

BSM with ν_{τ}

Appearance

Using some optimistic assumptions about ν_{τ} CC events in DUNE with τ hadronic decays a possible signal in 3.5 yrs running in CPV optimized beam and 1 yr in HE beam:

Phys. Rev. D. 100, 016004 (2019)

Simple Unitarity Tests with ν_{τ} Appearance in DUNE

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

BSM with ν_{τ} Appearance

Run in 3.5 (ν) +3.5 $(\bar{\nu})$ years with ν_{μ} disappearance, $\nu_{\rm e}$ appearance and ν_{τ} appearance in the default low-energy beam or combine all 3 modes with 3+3 years in LE + 1 year in HE beam:

U: Unitary matrix, N: non-unitary matrix

$$\mathsf{U} \to \mathsf{N}\mathsf{U} = \left(\begin{array}{ccc} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{array} \right) \mathsf{U} \stackrel{\widehat{\mathsf{g}}}{\overset{\mathsf{l}}{\cup}}{\overset{\mathsf{l}}{\cup}}^{10^{-1}}$$

Phys. Rev. D. 100, 016004 (2019)

See also talk by Julia Gehrlein: Wed Nov 3 1:30pm

Prospects for Beyond the ν Standard Model Physics in Long Baseline Neutrino Experiments

Mary Bisha

Long-Baseline

v Experiment

Non-Standard

Large Extra

LBL Sterile

CPT Violation

BSM with $u_{ au}$

Summary

Summary

Prospects for Beyond the νStandard Model Physics in Long Baseline Neutrino Experiments

Summary

■ Long-baseline experiments are entering an era of precision oscillation measurements with most 3-flavor oscillation parameters - like the mixing angles and mass differences - now measured at the few % level of precision.

- This opens up a new frontier of using precision oscillation measurements to search for physics beyond the Standard Model and beyond the 3-flavor ν model.
- Long-baseline oscillation experiments using high purity well known neutrino sources from accelerators are particularly sensitive to NC NSI, new interactions in matter, compactified large extra dimensions and low mass sterile neutrinos.
- Future LBL experiments like DUNE are also opening up a new frontier of new physics searches using ν_{τ} appearance. This promises tighter constraints on unitarity tests.